Hardware Implementation of FIR Neural Network for Applications in Time Series Data Prediction
نویسندگان
چکیده
Time series data prediction is used in several applications in the area of science and engineering. Time series prediction models have been implemented using statistical approaches, but recently, neural networks are being applied for times series prediction due to their inherent properties and capabilities. A variation of a standard neural network called as finite impulse response (FIR) neural network has proven to be highly successful in achieving higher degree of prediction accuracy when used over various time series prediction applications. These applications are time critical and involve huge amounts of computation that are slower when run on a general purpose processor and hence, a dedicated hardware is required. In this paper, authors present hardware implementation of an FIR neural network for applications in times series data prediction. The implementation is divided into (i) off-board, where the training algorithm and neural network configuration is implemented in Matrix Laboratory (MATLAB) and simulated with various benchmark time series data set and (ii) on-board, where the entire system is modeled in a hardware description language (HDL). The simulation experiment, hardware building blocks, the implementation framework, and the hardware design flow are discussed in this paper. The hardware resource utilization and timing information are also reported in the paper.
منابع مشابه
Vehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملTime Series Prediction with Multilayer Perceptron, FIR and Elman Neural Networks
Multilayer perceptron network (MLP), FIR neural network and Elman neural network were compared in four different time series prediction tasks. Time series include load in an electric network series, fluctuations in a far-infrared laser series, numerically generated series and behaviour of sunspots series. FIR neural network was trained with temporal backpropagation learning algorithm. Results s...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015